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Abstract We study the behavior of the two-dimensional two-component plasma in the pres-
ence of some adsorbing impurities. Using a solvable model, we find analytic expressions for
the thermodynamic properties of the plasma such as the n-body densities, the grand po-
tential, and the pressure. We specialize in the case where there are one or two adsorbing
point impurities in the plasma, and in the case where there are one or two parallel adsorbing
lines. In the former case we study the effective interaction between the impurities, due to the
charge redistribution around them. The latter case is a model for electrodes with adsorbing
sticky sites on their surface.

Keywords Coulomb gas · Adsorption sites

1 Introduction

A two-component plasma (TCP) is a system composed of two different types of particles
with charges ±e interacting through a Coulomb potential. In this work, we study a two-
dimensional model which is exactly solvable. The solution of Poisson equation shows that
in two dimensions, the Coulomb interaction between two particles, with charges q1, q2, at a
distance r from each other, is

v(r) = −q1q2 ln(r/L), (1.1)

where L is an irrelevant length scale fixing the zero of the potential.
Let us define the dimensionless coupling constant � = βe2, where β = (kBT )−1, T the

temperature and kB the Boltzmann constant. The coupling constant � is the ratio between
the electrostatic and thermal energy of the particles of the gas. If � < 2, the thermal energy
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is high enough to prevent the collapse of particles of different sign. If � ≥ 2, the system
is unstable against the collapse and the point-particles must be replaced by hard disks of
diameter a. Using the analogy between the two-component plasma and the sine-Gordon
quantum field theory, exact results for the thermodynamic properties of the Coulomb gas,
in the bulk [2] and near a planar interface [3, 4], have been obtained when � < 2. For
� = 2, the classical two-dimensional two-component plasma is equivalent to a quantum
free Fermi gas [1]. This fact allows us to find analytic expressions for the thermodynamic
properties and correlation functions of the plasma, for a wider variety of geometries [1, 5,
6], and even in the presence of external fields [7]. In this work, we restrict our analysis to
the case � = 2.

Assuming � = 2, we find analytical solutions for the thermodynamics of the two-
component plasma in the presence of some impurities. Results have been obtained for a
similar problem, the one-component plasma with adsorbing impurities [8, 9]. For the two-
component plasma, some similar problems to the present one, with adsorbing boundaries,
were considered in [10, 11].

An impurity in our model can be understood as a particle, different from the charged
particles of the gas. It interacts with the particles of the gas through a non-electrical potential
U±(r). As usual, for inhomogeneous systems under the action of an external field derived
from a potential U±(r), we can define a position depend fugacity due to the external potential
created by the impurity m±(r) = me−βU±(r), where m is the bulk fugacity. Here we are
interested in adsorbing impurities, which can be modeled with a position depend fugacity
m±(r) = m[1 + α±δ(r − R)], where α± is the magnitude of the interaction of the impurity
with the positive and the negative particles of the plasma (it will be called adhesivity), while
R is the position of the impurity in the plasma. In order to prevent the collapse of the opposite
charged particles, we will consider that the impurity only attracts one type of particles of the
system. For instance, if the impurity only attracts the positive particles of the system, α+ = α

and α− = 0.
This simplified model could be applied to some systems. An example is a salt solution

with positive and negative ions and porous sites, which can attract some of the ions, with
different sizes for each species. The size of the porous sites can be such that they are small
enough in order to avoid that the larger ions get adsorbed into the sites, while the smaller
ones are allowed to be adsorbed. The same salt solution may have some “dusty-points”; the
contact interaction may be generated by a chemical interaction among those points and the
charged particles. An example of a chemical interaction can be presented in some atoms
whose valence layer is not completely filled and they can receive electrons from an atom
with a small electronegativity.

The present document is organized as follows. In Sect. 2, we briefly review the general
mathematical treatment which allow us to find the thermodynamic properties and correlation
functions of the two-component plasma in the presence of any external potential when � = 2
[1]. In Sect. 3, we consider the case where there are a few point impurities in the plasma. We
concentrate specifically in the case of one or two impurities. We compute the density profiles
around the impurities and the two-body correlation functions using the method of [1]. Also,
we extend the treatment presented in [8] for the one-component plasma, to find general
expressions for the grand potential, and the one- and two-body density functions for the
two-component plasma with impurities, in terms of the same quantities for the unperturbed
system. In Sect. 4, we study the two-component plasma with one or two lines of adsorbing
impurities. We compute the one- and two-density functions and the grand potential using
the method of [1]. A summary of the main results is presented in Sect. 5.
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2 Method of Solution

To solve our specific model, we use the method introduced by Cornu and Jancovici [1]. This
mathematical treatment is valid for a globally neutral two-component Coulomb gas with
a coupling constant � = 2. Since the model is a two dimensional one, it is convenient to
express the position r = (x, y) of the particles in complex coordinates as z = x + iy. As
explained earlier, at � = 2, it is mandatory to introduce a cutoff distance a between particles
to avoid the collapse between particles of opposite sign. This cutoff can be understood as a
small diameter of the particles. It is shown in [1] that, in the limit a → 0, the grand partition
function � in this scheme is given by

ln� = Tr

(
ln

[(
/∂ + m+(r)

1 + σz

2
+ m−(r)

1 − σz

2

)
/∂−1

])
, (2.1)

where /∂ = σx∂x + σy∂y is the two dimensional Dirac operator. The matrices σx, σy, σz are
the Pauli matrices. The position dependent fugacity, defined as m±(r) = me−βU±(r), takes
into account an external potential U±(r) which can act differently on the positive or neg-
ative particles. The constant rescaled fugacity m is related to the chemical potential μ by
m = 2πeβμL/a2. It has units of inverse distance, and it is shown in [1], that (2m)−1 is the
screening length.

The calculation of the k-body densities is reduced to find the set of Green functions
Gs1s2(r1, r2), with s1, s2 = ±1, of the operator intervening in (2.1). They are the elements of
a 2 × 2 matrix which satisfy the differential equations

(
m+(r1) 2∂z

2∂z̄ m−(r1)

)(
G++(r1, r2) G+−(r1, r2)

G−+(r1, r2) G−−(r1, r2)

)
= δ(r1 − r2). (2.2)

The density n±(r) and two-body truncated density correlation function n
(2)T
± (r1, r2) of the

system are given by [1]

ns(r) = ms(r)Gss(r, r), (2.3a)

n(2)T
s1s2

(r1, r2) = −ms1(r)ms2(r2)Gs1s2(r1, r2)Gs2s1(r2, r1), (2.3b)

where T means truncated. More generally, the truncated k-body densities are given by [1]

n(k)T
s1...sk

(r1, . . . , rk) = (−1)k+1ms1(r1) . . .msk (rk)

×
∑

cycles (i1...ik )

Gsi1 si2
(ri1 , ri2) · · ·Gsik

si1
(rik , ri1). (2.3c)

The Green functions satisfy the useful relations

Gss(r1, r2) = Gss(r2, r1), (2.4a)

Gs−s(r1, r2) = −G−ss(r2, r1). (2.4b)

The grand potential β
 = − ln� can be written as

β
 = −
∑

k

ln
(
1 + λk

)
, (2.5)
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where λk are the eigenvalues of the system

[
/∂ − 1

λ

(
m+(r) 0

0 m−(r)

)]
ψ(r) = 0, with ψ(r) =

(
g(r)
f (r)

)
, (2.6)

a two-component spinor. Equation (2.6) shows the mentioned equivalence between the two
component plasma at � = 2 and a free fermion gas. The pressure p is given as usual by

βp = ∂ ln�

∂A
= − 1

A
β
, (2.7)

in the thermodynamic limit, where 
 is the grand potential. The “volume” of the gas is
replaced by its area A because we are dealing with a two-dimensional model.

The above results are valid in the limit a → 0. However, in this limit the partition function
and other thermodynamical quantities such as the pressure and the density are divergent. We
shall compute the (divergent) dominant term as a function of the cutoff a. On the other hand,
the truncated correlation functions are finite in the limit a → 0.

3 The Plasma with Some Point Adsorbing Impurities

In this section, we study the two-component plasma in the presence of one or two impurities.
First, we find the Green functions associated to this system at � = 2. This allows us to
find the k-body densities of the plasma. We will distinguish two kind of impurities. They
will be called “positive” impurities when they attract the positive particles of the plasma,
and “negative” impurities in the opposite case. This is a small abuse of language, since the
impurities do not carry any electrical charge by themselves alone.

Then we shall extend the general theory presented in [8], to find general expressions for
the thermodynamic properties of the system with impurities in term of those same quanti-
ties for the unperturbed system. These last results are valid for any value of the coupling
constant �.

3.1 Density and Correlations at � = 2

3.1.1 A Positive Impurity

We consider a single impurity in the plasma that only adsorbs the positive charged parti-
cles. In this case the fugacity becomes m+(r) = m[1 + α1δ(r − R1)] and m−(r) = m. The
constants α1 and R1 represent the adhesivity of the impurity and its position.

First we compute the Green functions that are needed to find the density and correlations.
To solve the system (2.2) for the Green functions, we assume solutions of the form Gs1s2 =
G0

s1s2
+ G1

s1s2
, where G0

s1s2
are the bulk solutions (solutions for an unperturbed plasma

with m±(r) = m) [1]

G0
±±(r1, r2) = m

2π
K0(m|r1 − r2|), (3.1a)

G0
−+(r1, r2) = m

2π

(x1 − x2) + i(y1 − y2)

|r1 − r2| K1(m|r1 − r2|)

= m

2π
eiθ12K1(m|r1 − r2|), (3.1b)
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where θ12 is the polar angle of the vector r1 − r2 and K0(x),K1(x) are the modified Bessel
functions of second kind of order 0 and 1. The bulk solutions satisfy the appropriate bound-
ary condition at r1 = r2 imposed by the δ(r1 − r2) in (2.2). The functions G1

s1s2
take into

account the contribution of the impurity. They satisfy the differential equations

mG1
++(r1, r2) + 2∂z1G

1
−+(r1, r2)

+ mα1δ(r1 − R1)
[
G0

++(r1, r2) + G1
++(r1, r2)

] = 0, (3.2a)

2∂z̄1G
1
++(r1, r2) + mG1

−+(r1, r2) = 0, (3.2b)

mG1
+−(r1, r2) + 2∂z1G−−(r1, r2)

+ mα1δ(r1 − R1)
[
G0

+−(r1, r2) + G1
+−(r1, r2)

] = 0, (3.2c)

2∂z̄1G
1
+−(r1, r2) + mG1

−−(r1, r2) = 0. (3.2d)

We will first solve the equations for G1++ and G1−+. We divide the space into two regions:
r1 < R1 and r1 > R1. These regions will be denoted by the superscripts (1) and (2) respec-
tively. The general solutions for G1±+ are

G1
++(r1, r2) =

{∑
l∈Z

eilθ1B
(1)
l Il(mr1), r1 < R1,∑

l∈Z
eilθ1A

(2)
l Kl(mr1), r1 > R1,

(3.3a)

G1
−+(r1, r2) =

{
−∑

l∈Z
eilθ1B

(1)

l−1Il(mr1), r1 < R1,∑
l∈Z

eilθ1A
(2)

l−1Kl(mr1), r1 > R1,
(3.3b)

with Il(x) and Kl(x) the modified Bessel functions of first and second kind of order l.
From (3.2a), we notice that G1++ is continuous, but that G1−+ must be discontinuous at
r1 = R1, due to the δ(r1 − R1) term. Multiplying (3.2a) by e−ilθ1 and integrating on r1 in a
small annulus domain, centered at the origin and containing R1, gives

G1
++(r1, r2)|r1=R+

1
= G1

++(r1, r2)|r1=R−
1
, (3.4a)

mα1

2πR1

[
G0

++(R1, r2) + G1
++(R1, r2)

]

= −[
G

(1)l+1
−+ (r1, r2)|r1=R+

1
− G

(1)l+1
−+ (r1, r2)|r1=R−

1

]
, (3.4b)

where G
(1)l+1
−+ refers to the l + 1 term of the sum in (3.3b). Imposing the boundary condi-

tions (3.4), we find

A
(2)
l = B

(1)
l

Il(mR1)

Kl(mR1)
(3.5)

and

B
(1)
l = − m3α1Kl(mR1)e

−ilθR1 K0(m|R1 − r2|)
4π2[1 + m2α1

2π

∑
n∈Z

Kn(mR1)In(mR1)]
, (3.6)

where θR1 is the polar angle of the vector R1.
At this point, let us comment a few details about the bulk density, for an unperturbed

system, which will be useful to interpret the denominator in (3.6). The bulk density is
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given by n0±(r) = mG0±±(r, r). Nevertheless, this expression diverges, since, for small ar-
gument, K0(x) ∼ ln(2/x)−C, with C � 0.5772 the Euler constant [1]. This divergence can
be avoided by replacing the point particles by hard spheres of size a, which represents the
minimum distance between two charged particles. Then, we compute the bulk density as
n0± = mG0±±(r1, r2) with |r1 − r2| = a → 0. Thus,

n0
± = n0 = m2

2π
K0(m|r1 − r2|) = m2

2π
K0(ma) � m2

2π

[
ln

2

ma
− C

]
, (3.7)

where we used the small-argument expansion of the Bessel function K0. Now, let us re-
call the expansion K0(m|r1 − r2|) = ∑

n∈Z
ein(θ1−θ2)In(mr<)Kn(mr>) with r< = min(r1, r2)

and r> = max(r1, r2) [12]. With this expansion, we can obtain another formal (divergent)
expression for the bulk density

n0
±(R1) = n0 = m2

2π

∑
n∈Z

Kn(mR1)In(mR1). (3.8)

Since the unperturbed system is homogeneous the bulk density is constant, n0±(R1) = n0

does not depend on R1. We notice that it is this expression that precisely appears in the
denominator of (3.6). Then,

B
(1)
l = −m3α1Kl(mR1)e

−ilθR1 K0(m|R1 − r2|)
4π2(1 + α1n0)

. (3.9)

Replacing in (3.3a) and (3.3b),

G1
++(r1, r2) = − m3α1

4π2[1 + α1n0]K0(m|R1 − r2|)K0(m|r1 − R1|), (3.10a)

G1
−+(r1, r2) = − m3α1e

iθ1R1

4π2[1 + α1n0]K0(m|r2 − R1|)K1(m|r1 − R1|), (3.10b)

with θ1R1 the polar angle of the vector r1 − R1.
In a similar way, the other two Green functions are

G1
−−(r1, r2) = m3α1e

i(θ1R1 −θ2R1 )

4π2[1 + α1n0] K1(m|r1 − R1|)K1(m|r2 − R1|), (3.11a)

G1
+−(r1, r2) = m3α1e

−iθ2R1

4π2[1 + α1n0]K0(m|r1 − R1|)K1(m|R1 − r2|), (3.11b)

with θ2R1 the polar angle of the vector r2 − R1. The one-body densities can be calculated by
using (2.3a), the result is

n+(r) = [
1 + α1δ(r − R1)

][
n0 −

(
m2

2π

)2
α1[K0(m|R1 − r|)]2

[1 + α1n0]
]
, (3.12a)

n−(r) = n0 +
(

m2

2π

)2
α1[K1(m|R1 − r|)]2

[1 + α1n0] . (3.12b)
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The number of positive and negative particles of the plasma, N± = ∫
n±(r) d2r, is

N+ = N− = n0πR2 − m2α1

4π [1 + α1n0] + n0α1

1 + α1n0
, (3.13)

where we supposed that the plasma is confined in a large disk of radius R.
The difference N+ − N− = 0. This shows that the global neutrality of the system is not

changed, only the charge distribution. The amount of positive charge bound to the impurity,
N

α1+ , is given by the term which multiply the delta distribution in (3.12a), evaluated at R1.
The result is

N
α1+ = α1n0

1 + α1n0
, (3.14)

which can be interpreted as a mean occupation number or probability that the adsorbing
point is occupied by a positive charge. As the adhesivity α1 is increased, the average number
of adsorbed positive particles N

α1+ increases, as expected. In the limit α1 → ∞, the maxi-
mum value of adsorbed particles is obtained N∞+ = 1. Notice that in average there cannot be
more than one adsorbed particle per impurity site. Once a particle is adsorbed, any other par-
ticle of the same sign feels a strong electrostatic repulsion that prevent it from approaching
the adsorption site.

This localized positive adsorbed charge is the responsible of the change in the charge
distribution. Since the bound charge is positive, it repels the positive particles and attracts the
negative ones. As a consequence, the density of the negative particles around the impurity
increases, and the density of the positive particles around the impurity decreases. As it is
expected, the larger the adhesivity α1 is, the larger this effect is. This behavior can be seen
in Figs. 1, 2 and 3 which show the density profiles of the positive and negative particles, and
the charge density profile.

If the impurity attracts the negative particles, instead of the positive ones, we obtain the
same results by interchanging (+ ←→ −).

As seen in Figs. 1, 2 and 3, a charge polarization cloud is formed around the impurity. It is
interesting to evaluate the electric potential created by this charge distribution. To compute
the electric potential, we use the Poisson equation ∇2φ(r) = −2πe[n+(r) − n−(r)], where
n±(r) are given in (3.12). In the thermodynamic limit the plasma is large enough and we can
assume an angular symmetry around the impurity (locating it at the origin). Thus, Poisson

Fig. 1 Density profile of positive
particles for m2α1 = 1,0.5 and
0.2 from the darkest to the
lightest. The dashed line
represents the bulk density. The
vertical line at mr = 1 represents
the Dirac distribution related to
the impurity position which is
located at mR1 = 1. The angular
difference is θ − θR1 = 0. The
cutoff is ma = 0.01
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Fig. 2 Density profile of
negative particles for
m2α1 = 1,0.5 and 0.2 from the
darkest to the lightest, with the
same parameters as in Fig. 1

Fig. 3 Charge density profile for
m2α1 = 1,0.5 and 0.2 from the
darkest to the lightest, with the
same parameters as in Fig. 1

equation reduces to

1

r

d

dr

[
r

d

dr
φ(r)

]
= −2πe[n+(r) − n−(r)]. (3.15)

Integrating, we find the electric potential

φ(r) = em2α1

2π [1 + α1n0] [K0(mr)]2 = em2N
α1+

2n0π
[K0(mr)]2. (3.16)

From (3.16) we can see that close to the impurity, the potential behaves as [ln(mr)]2, which
is stronger than the bare Coulomb potential − ln(r/L). This is due to the strong electrosta-
tic coupling considered here [18], for smaller coupling, one would expect that the electric
potential close to the impurity behaves as the bare Coulomb potential. Far away from it, the
interaction decays exponentially due to the screening effect.

3.1.2 Two Positive Impurities

Now, we consider two impurities located at R1 and R2 with adhesivities α1 and α2 re-
spectively, both attracting positive particles. The fugacities are now given by m+(r) =
m[1 + α1δ(r − R1) + α2δ(r − R2)] and m−(r) = m.

To solve the system of (2.2) for the Green functions, we assume they are of the form
Gs1s2 = G0

s1s2
+G1

s1s2
+G2

s1s2
where G1

s1s2
are the solutions previously found for one impurity
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located at R1. Without lost of generality we choose R2 > R1. The space is now divided into
three regions. The first region is r1 < R1, the second region is R1 < r1 < R2 and the third
one is R2 < r1. The differential equations satisfied by G2±+ are

m
[
1 + α1δ(r1 − R1) + α2δ(r1 − R2)

]
G2

++(r1, r2)

+ mα2δ(r1 − R2)
[
G0

++(r1, r2) + G1
++(r1, r2)

] + 2∂z1G
2
−+(r1, r2) = 0 (3.17a)

2∂z̄1G
2
++(r1, r2) + mG2

−+(r1, r2) = 0, (3.17b)

with general solutions of the form

G2
++(r1, r2) =

⎧⎪⎨
⎪⎩

∑
l∈Z

eilθ1B
(1)
l Il(mr1), r1 < R1,∑

l∈Z
eilθ1 [B(2)

l Il(mr1) + A
(2)
l Kl(mr1)], R1 < r1 < R2,∑

l∈Z
eilθ1A

(3)
l Kl(mr1), R2 < r1,

(3.18)

G2
−+(r1, r2) =

⎧⎪⎨
⎪⎩

−∑
l∈Z

eilθ1B
(1)

l−1Il(mr1), r1 < R2,∑
l∈Z

eilθ1 [−B
(2)

l−1Il(mr1) + A
(2)

l−1Kl(mr1)], R1 < r1 < R2,∑
l∈Z

eilθ1A
(3)

l−1Kl(mr1), R2 < r1.

The delta functions in (3.17a) impose that G2++ is continuous at r1 = R1 and r1 = R2 but
G2−+ is discontinuous. Imposing these four boundary conditions, we find after some algebra

A
(2)
l = −m4α1α2K0(m|R1 − R2|)

4π2η
Il(mR1)e

−ilθR1 D1,

A
(3)
l = m2α2

2πη
Il(mR2)e

−ilθR2 [1 + α1n0]D1 + A
(2)
l ,

(3.19)

B
(2)
l = m2α2

2πη
Kl(mR2)e

−ilθR2 [1 + α1n0]D1,

B
(1)
l = B

(2)
l − m4α1α2K0(m|R1 − R2|)

4π2η
Kl(mR1)e

−ilθR1 D1,

with

D1 = − m

2π
K0(m|r2 − R2|) + m3α1K0(m|R1 − r2|)K0(m|R1 − R2|)

4π2[1 + α1n0] , (3.20)

η = 1 + α1n0 + α2n0 + α1α2n
2
0 − m4α1α2

4π2

[
K0(m|R1 − R2|)

]2
. (3.21)

The functions G2±+ are therefore

G2
++(r1, r2) = m2α2

2πη
D1

[
[1 + α1n0]K0(m|r1 − R2|)

− m2α1

2π
K0(m|r1 − R1|)K0(m|R1 − R2|)

]
, (3.22a)
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Fig. 4 Charge density profile for
two “positive” impurities. The
adhesivities are m2α1 = 0.2 and
m2α2 = 0.5. The positions of the
impurities are on the x axis at
mR1 = 1, mR1 = 1.4 and
mR2 = 2, mR2 = 1.6,
respectively from the darkest to
the lightest. All the angular
differences are zero. The cutoff is
ma = 0.01

G2
−+(r1, r2) = m2α2

2πη
D1

[
[1 + α1n0]K1(m|r1 − R2|)eiθ1R2

− m2α1

2π
K1(m|r1 − R1|)eiθ1R1 K0(m|R1 − R2|)

]
. (3.22b)

Following some similar steps, we find the other two Green functions

G2
−−(r1, r2) = −m2α2

2πη
D2

[
[1 + α1n0]K1(m|r1 − R2|)eiθ1R2

− m2α1

2π
K1(m|r1 − R1|)eiθ1R1 K0(m|R1 − R2|)

]
, (3.23a)

G2
+−(r1, r2) = −m2α2

2πη
D2

[
[1 + α1n0]K0(m|r1 − R2|)

− m2α1

2π
K0(m|r1 − R1|)K0(m|R1 − R2|)

]
, (3.23b)

with

D2 = − m

2π
K1(m|R2 − r2|)e−iθ2R2

+ m3α1K1(m|R1 − r2|)K0(m|R2 − R1|)e−iθ2R1

4π2[1 + α1n0] . (3.24)

Replacing these Green functions in (2.3a) gives the density profiles. Figure 4 shows the
charge density profile. It can be seen that the charge density decreases around the adsorbing
points like it was found in the problem with one impurity. The density depends on the adhe-
sivity as well as of the distance between the impurities. An important effect arises when the
adsorbing points are close enough which indicates the existence of an indirect interaction
between the impurities (see Sect. 3.2.3).

3.1.3 One Positive and One Negative Impurity

Now we consider the case when the second impurity only adsorbs the negative parti-
cles. The fugacities for this configuration are m+(r) = m[1 + α1δ(r − R1)] and m−(r) =
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m[1 + α2δ(r − R2)]. Assuming a similar solution as in (3.18), and after establishing the
appropriate boundary conditions for this case, we solve the linear system (2.2), to find

G++(r1, r2) = G0
++(r1, r2) + G1

++(r1, r2)

+ m2α2

2πη̄
D3

[
[1 + α1n0]K1(m|r1 − R2|)e−iθ1R2

− m2α1

2π
K0(m|r1 − R1|)e−iθR1R2 K1(m|R1 − R2|)

]
, (3.25)

G−+(r1, r2) = G0
−+(r1, r2) + G1

−+(r1, r2)

− m2α2

2πη̄
D3

[
[1 + α1n0]eiθR2 K0(m|r1 − R2|)e−iθ1R2

+ m2α1

2π
K1(m|r1 − R1|)ei(θ1R1 −θR1R2 )K1(m|R1 − R2|)

]
, (3.26)

with

D3 = m2

2π
eiθ2R2 K1(m|R2 − r2|)

− m3α1K0(m|R1 − r2|)eiθR1R2 K1(m|R2 − R1|)
4π2[1 + α1n0] , (3.27)

η̄ = 1 + α1n0 + α2n0 + α1α2n
2
0 + m4α1α2

4π2

[
K1(m|R1 − R2|)

]2
(3.28)

and θR1R2 the polar angle of the vector R1 − R2.
In order to find G−−, we note that if we interchange R1 and R2 and their adhesivities

in the problem for G++, we would have a negative impurity at r1 = R1, and a positive one
at r1 = R2. Due to this symmetry argument, the function G−− for one positive and one
negative impurity at r1 = R1 and r1 = R2, is the function G++ with R1 and R2 and their
adhesivities interchanged. Then,

G−−(r1, r2;R1, α1,R2, α2) = G++(r1, r2;R2, α2,R1, α1), (3.29)

with G++ given in (3.25).
Figure 5 shows the charge density profile for this situation.

3.1.4 General Structure of the Green Functions for Two Impurities

The results of the two previous sections can be put in more general and compact form. Let
S1 = ±1 be the sign of the particles the impurity at R1 attracts and S2 = ±1 the sign of
the particles the second impurity at R2 attracts. Let us denote by Ĝs1s2 = G0

s1s2
+ G1

s1s2
, the

Green functions for the case of only one impurity located at R1 ((3.10) and (3.11)). Notice
that in general (3.10) and (3.11) can be written as

Ĝs1s2(r1, r2) = G0
s1s2

(r1, r2) − mα1

1 + α1n
0
S1

(R1)
G0

s1S1
(r1,R1)G

0
S1s2

(R1, r2) (3.30)

in terms of the Green functions G0
s1s2

and the density n0
s of the unperturbed system.
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Fig. 5 Charge density profile for
one “positive” impurity and one
“negative” impurity. The
adhesivities are m2α1 = 0.2
(positive impurity) and
m2α2 = 0.5 (negative impurity).
The positions of the impurities
are on the x axis at mR1 = 1,
mR1 = 1.4 (positive impurity)
and mR2 = 2, mR2 = 1.6
(negative impurity), respectively
from the darkest to the lightest.
All the angular differences are
zero. The cutoff is ma = 0.01

The solutions for the Green functions found in the two previous sections for the case of
two impurities can be written, in term of the Green function for one impurity, as

Gs1s2(r1, r2) = Ĝs1s2(r1, r2) − mα2

η
Ĝs1S2(r1,R2)ĜS2s2(R2, r2), (3.31)

where η was defined in (3.21) and (3.28) (denoted η̄ in this last equation). In general

η = 1 + α1n
0
S1

(R1) + α2n
0
S2

(R2) + α1α2n
0,(2)
S1S2

(R1,R2), (3.32)

where n
0,(2)
S1S2

(R1,R2) is the (non-truncated) pair correlation function for the unperturbed sys-
tem. Notice the similarity in the structure of the Green functions in (3.30) and (3.31).

Replacing (3.30) into (3.31) gives the expression

Gs1s2(r1, r2) = G0
s1s2

(r1, r2)

− 1

η

[
mα1

[
1 + α2n

0
S2

(R2)
]
G0

s1S1
(r1,R1)G

0
S1s2

(R1, r2)

+ mα2

[
1 + α1n

0
S1

(R1)
]
G0

s1S2
(r1,R2)G

0
S2s2

(R2, r2)

− m2α1α2

[
G0

s1S1
(r1,R1)G

0
S1S2

(R1,R2)G
0
S2s2

(R2, r2)

+ G0
s1S2

(r1,R2)G
0
S2S1

(R2,R1)G
0
S1s2

(R1, r2)
]]

(3.33)

in which the exchange symmetry between (R1, S1) and (R2, S2) is manifested.

3.2 General Results

The grand potential of the system with impurities can be found by solving the eigenvalue
problem (2.6) for each particular situation. We will proceed this way to compute the grand
potential for the Coulomb gas in the presence of a continuous adsorbing line in Sects. 4.2.1
and 4.2.2. Although this method can also be used to compute the grand potential with point
impurities [13], for this latter case, we shall proceed differently, using the general theory
developed in [8] for a one-component fluid with adsorbing sites.

In the following subsections, we obtain expressions for the grand potential and the one-
and two-body densities of the plasma with impurities in terms of those same quantities for
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the plasma without impurities (the unperturbed system). These results are very general: they
are valid for any value of the coupling �, they are even valid for any other type of interaction
potential between the particles of the system, not only for the Coulomb system considered
here. In the present case, since at � = 2 the grand potential and density functions for the
unperturbed system are known, one can obtain explicit expressions for the thermodynamics
and correlations of the plasma with impurities.

3.2.1 Grand Partition Function with an Arbitrary Number of Impurities

Suppose there are M+ impurities attracting positive particles, located at R+
1 , . . . ,R+

M+ ,
with adhesivities α+

1 , . . . , α+
M+ , and M− impurities attracting negative particles, located

at R−
1 , . . . ,R−

M− , with adhesivities α−
1 , . . . , α−

M− . The general calculations done in [8] for
a one-component plasma, can directly be adapted to the present two-component case, to
find that the grand partition function � can be written as

� = �0

∞∑
s+=0

∞∑
s−=0

M+∑
k+

1 ,...,k+
s+ =0

M−∑
k−

1 ,...,k−
s− =0

∏s+
n=1 αk+

n

∏s−
n=1 αk−

n

s+!s−!

× n
0,(s++s−)

{s+}{s−} (R+
k+

1
, . . . ,R+

k+
s+

,R−
k−

1
, . . . ,R−

k−
s−

) (3.34)

where �0 is the grand partition function of the unperturbed system and n
0,(s++s−)

{s+}{s−} the
(s+ + s−)-body density for s+ positive particles and s− negative particles of the unper-
turbed system. Notice that, since the correlation function vanishes if two of its arguments
are equal, the above expression is not an infinite sum, it contains at most terms involving the
(M+ + M−)-body correlation function and lower degree correlations.

From expression (3.34) we can obtain the density and k-body correlation functions per-
forming successive functional derivations of the grand partition function with respect to the
fugacity.

3.2.2 One Impurity

In the case of a single impurity located at R1, with adhesivity α1 and attracting particles of
sign S1, (3.34) simply reduces to

� = [
1 + α1n

0
S1

(R1)
]
�0. (3.35)

Then, the grand potential 
 = −kBT ln� can be written as 
 = 
0 + 
exc(α1) with 
0 the
grand potential of the unperturbed system and an excess grand potential

β
exc(α1) = − ln
[
1 + α1n

0
S1

(R1)
]
. (3.36)

As explained in [8], the adhesivity α can be interpreted also as a fugacity for the adsorbed
particles. Thus, one can compute the average number of adsorbed particles from the relation

N
α1
S1

= −α1
∂β
exc(α1)

∂α1
= α1n

0
S1

(R1)

1 + α1n
0
S1

(R1)
. (3.37)

We recover the result (3.14) obtained from a direct calculation at � = 2.
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From (3.35) we can also rederive the results from the previous section for the density and
correlation functions, by performing functional derivatives of � with respect to the fugacity.
Remembering that

ms(r)
δ ln�0

δms(r)

∣∣∣∣
m(r)=m

= n0
s (r) (3.38)

and

ms2(r2)
δn0

s1
(r1)

δms2(r2)

∣∣∣∣
m(r)=m

= n0,(2)T
s1s2

(r1, r2), (3.39)

deriving (3.35) with respect to ms(r), we obtain

nS1(r) = [
1 + α1δ(r − R1)

][
n0

S1
(r) + α1n

0,(2)T
S1S1

(r,R1)

1 + α1n
0
S1

(R1)

]
(3.40a)

and

n−S1(r) = n0
−S1

(r) + α1n
0,(2)T
−S1S1

(r,R1)

1 + α1n
0
S1

(R1)
. (3.40b)

When � = 2, we recover the results (3.12) from Sect. 3.1.1. Deriving (3.40) once again with
respect to the fugacity, we obtain the truncated two-body correlation functions

n
(2)T
S1S1

(r1, r2) = [
1 + α1δ(r1 − R1)

][
1 + α1δ(r2 − R1)

]
n

(2)T ∗
S1S1

(r1, r2), (3.41a)

n
(2)T
−S1S1

(r1, r2) = [
1 + α1δ(r2 − R1)

]
n

(2)T ∗
−S1S1

(r1, r2), (3.41b)

n
(2)T
−S1,−S1

(r1, r2) = n
(2)T ∗
−S1,−S1

(r1, r2), (3.41c)

with

n(2)T ∗
s1s2

(r1, r2) = n0,(2)T
s1s2

(r1, r2) − α2
1n

0,(2)T
s1S1

(r1,R1)n
0,(2)T
S1s2

(R1, r2)[
1 + α1n

0
S1

(R1)
]2

+ α1n
0,(3)T
s1s2S1

(r1, r2,R1)

1 + α1n
0
S1

(R1)
, (3.42)

where n0,(3)T
s1s2s3

is the truncated three-body density function of the unperturbed system. From
the Green functions, (3.30), obtained in the previous section and the general relations (2.3),
it can be shown that the correlation functions obtained in Sect. 3.1.1 are indeed those given
by (3.41) and (3.42) when � = 2.

3.2.3 Two Impurities

Now, let us consider the case of two impurities, located at R1 and R2 with adhesivities α1

and α2 and attracting particles of sign S1 and S2, respectively. Equation (3.34) gives

� = �0

[
1 + α1n

0
S1

(R1) + α2n
0
S2

(R2) + α1α2n
0,(2)
S1S2

(R1,R2)
] = �0η (3.43)

with η defined in (3.32). The grand potential now reads

β
 = β
0 − lnη. (3.44)
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Notice that in the problems for one and two impurities the excess grand potential is the loga-
rithm of the denominator of the Green functions G1

s1s2
and G2

s1s2
respectively. It is convenient

to express the grand potential as


 = 
0 + 
exc(α1) + 
exc(α2) + 
S1S2(R1, α1;R2, α2), (3.45)

with

β
S1S2(R1, α1;R2, α2) = − ln

[
1 + α1α2n

0,(2)T
S1S2

(R1,R2)

[1 + α1n
0
S1

(R1)][1 + α2n
0
S2

(R2)]
]
. (3.46)

Explicitly, for � = 2,

β
±±(R1, α1;R2, α2) = − ln

[
1 − m4α1α2[K0(m|R1 − R2|)]2

4π2[1 + α1n0][1 + α2n0]
]

(3.47)

and

β
±∓(R1, α1;R2, α2) = − ln

[
1 + m4α1α2[K1(m|R1 − R2|)]2

4π2[1 + α1n0][1 + α2n0]
]
. (3.48)

A work 
exc(αi) is required to introduce a single impurity into the plasma. To intro-
duce two impurities, we require, in addition to 
exc(α1) + 
exc(α2), an additional work

S1S2(R1, α1;R2, α2). We can define the effective chemical potential of an impurity with
adhesivity α as μ(α) = 
exc(α). The term 
S1S2(R1, α1;R2, α2) represents an effective in-
teraction between the impurities. This contribution is not a direct interaction between the
adsorbing particles but a consequence of the inhomogeneous charge distribution that they
create.

Figures 6 and 7 show the effective interaction between two adsorbing particles. It can
be seen that it is repulsive if the impurities have the same sign and attractive if their sign is
opposite. As expected, the interaction is important when the impurities are close enough but
is negligible for large distances. It depends on the adhesivity of the two impurities, indeed,
it is larger for large adhesivities.

Fig. 6 Effective interaction
between two positive impurities
as a function of their distance.
The adhesivities are
m2α1 = m2α2 = 0.2,1 and 2
from darkest to lightest. The
cutoff is ma = 0.01
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Fig. 7 Effective interaction
between a positive and a negative
impurity as a function of their
distance. The values are the same
than in Fig. 6

From (3.43), we can obtain the density profiles by performing a functional derivative
with respect to the fugacity. We obtain

ns(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[1 + α1δ(r − R1) + α2δ(r − R2)]n∗
s (r) if s = S1 = S2,

[1 + α1δ(r − R1)]n∗
s (r) if s = S1 = −S2,

[1 + α2δ(r − R2)]n∗
s (r) if s = S2 = −S1,

n∗
s (r) if s = −S1 = −S2,

(3.49)

with

n∗
s (r) = n0

s (r) + 1

η

[
α1n

0,(2)T
sS1

(r,R1)
[
1 + α2n

0
S2

(R2)
]

+ α2n
0,(2)T
sS2

(r,R2)
[
1 + α1n

0
S1

(R1)
] + α1α2n

0,(3)T
sS1S2

(r,R1,R2)
]
. (3.50)

With the Green functions (3.33) for two impurities found in Sects. 3.1.2, 3.1.3 and 3.1.4
and the general relation (2.3), it is direct to verify that the density is indeed given by (3.49)
and (3.50) when � = 2.

We can compute the average number of adsorbed particles by each impurity N
αi

Si
, for

i = 1,2. This can be obtained either from the relation N
αi

Si
= αin

∗
Si

(Ri ), or from

N
αi

Si
= −αi

∂(β
)

∂αi

. (3.51)

We obtain

N
αi

Si
= αin

0
Si

(Ri ) + α1α2n
0,(2)
S1S2

(R1,R2)

1 + α1n
0
S1

(R1) + α2n
0
S2

(R2) + α1α2n
0,(2)
S1S2

(R1,R2)
. (3.52)

4 The Plasma with Adsorbing Lines

4.1 Density and Correlations

4.1.1 An Infinite Line

As a simple model for electrodes with adsorbing sites, we consider now that a line of impu-
rities is introduced into the plasma. We shall consider the case where the impurities are very
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close to each other, so there is a continuous adsorbing line in the plasma, located at x = x0.
Since the system is translational invariant in the direction of the line (the y direction), it is
better to work in Cartesian coordinates and confine the plasma in a rectangular box. The
fugacity can be modeled by

m±(r) = m±(x) = m
[
1 + ᾱ±δ(x − x0)

]
. (4.1)

The adhesivity ᾱ± has length dimensions, unlike the adhesivity α± for point impurities
which has area dimensions. Actually, ᾱ± is an effective adhesivity due to the distribution
of the adsorbing particles on the line. We will assume that the line is composed of “positive”
impurities, so ᾱ+ = ᾱ1 and ᾱ− = 0.

Due to the translational invariance in the y direction, this problem is easier to solve via
Fourier transform. For this purpose we define

Gs1s2(r1, r2) = 1

2π

∫
R

G̃s1s2(x1, x2, l)e
il(y1−y2)dl. (4.2)

By replacing (4.2) and the given fugacities into (2.2), we obtain the system

m
[
1 + ᾱ1δ(x1 − x0)

]
G̃++(x1, x2, l)

+
(

d

dx1
+ l

)
G̃−+(x1, x2, l) = δ(x1 − x2), (4.3a)

(
d

dx1
− l

)
G̃++(x1, x2, l) + mG̃−+(x1, x2, l) = 0, (4.3b)

m
[
1 + ᾱ1δ(x1 − x0)

]
G̃+−(x1, x2, l)

+
(

d

dx1
+ l

)
G̃−−(x1, x2, l) = 0, (4.3c)

(
d

dx1
− l

)
G̃+−(x1, x2, l) + mG̃−−(x1, x2, l) = δ(x1 − x2). (4.3d)

We assume solutions of the form G̃s1s2 = G̃0
s1s2

+ G̃1
s1s2

where G̃0
s1s2

are the bulk solutions
for ᾱ1 = 0. It is easy to show that these solutions are given by [1]

G̃0
±±(x1, x2, l) = m

2k
e−k|x1−x2|, (4.4a)

G̃0
−+(x1, x2, l) = 1

m

(
− d

dx1
+ l

)
G̃0

++(x1, x2, l), (4.4b)

G̃0
+−(x1, x2, l) = − 1

m

(
d

dx1
+ l

)
G̃0

−−(x1, x2, l), (4.4c)

with k = √
m2 + l2.

The solutions to (4.3) are

G̃++(x1, x2, l) =

⎧⎪⎨
⎪⎩

m
2k

e−k|x1−x2| − m3ᾱ1
2k(2k+m2ᾱ1)

e−k|2x0−x1−x2|, x0 < x1, x2,

or x0 > x1, x2,

m

2k+m2ᾱ1
e−k|x1−x2|, x0 between x1 and x2,

(4.5)
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G̃−−(x1, x2, l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m
2k

e−k|x1−x2| + mᾱ1(k+l)2

2k(2k+m2ᾱ1)
ek(2x0−x1−x2), x0 < x1, x2,

m

2k+m2ᾱ1
e−k|x1−x2|, x0 between x1 and x2,

m
2k

e−k|x1−x2| + mᾱ1(k−l)2

2k(2k+m2ᾱ1)
e−k(2x0−x1−x2), x0 > x1, x2.

(4.6)

The number density profiles n+, n−, and charge density profile ρ (in units of e) are
obtained using (2.3). We find

n+(x) = [
1 + ᾱ1δ(x − x0)

]
n∗

+(x), (4.7a)

n−(x) = n∗
−(x), (4.7b)

ρ(x) = n+(x) − n−(x) = ᾱ1δ(x − x0)n
∗
+(x0) + ρ∗(x), (4.7c)

with

n∗
+(x) = n0

+ − m3ᾱ1

∫ ∞

0

dt

4π

e−2
√

t2+1m|x−x0|
√

t2 + 1(
√

t2 + 1 + α̃)
, (4.8a)

n∗
−(x) = n0

− + m3ᾱ1

∫ ∞

0

dt

4π

(1 + 2t2)e−2
√

t2+1m|x−x0|
√

t2 + 1(
√

t2 + 1 + α̃)
, (4.8b)

ρ∗(x) = −m3ᾱ1

∫ ∞

0

dt

2π

√
t2 + 1 e−2

√
t2+1m|x−x0|

√
t2 + 1 + α̃

, (4.8c)

with α̃ = mᾱ1/2.
Figure 8 show the charge density profile for this configuration. The curves obtained are

similar to the ones obtained for point impurities. They differ in the magnitude as well as in
the peaks near the adsorbing particles. The magnitude of the density at the adsorbing line is
reduced as a consequence of the impurities distribution.

The line charge density adsorbed by the line, σ , can be computed by the relation

σ = ᾱ1n
∗
+(x0) (4.9)

or by integrating the opposite of the nonadsorbed charge density

σ = −
∫ ∞

−∞
ρ∗(x) dx. (4.10)

Fig. 8 Charge density profile for
a line of “positive” impurities at
mx = 1. The adhesivities are
mᾱ1 = 0.2,1 and 3 from the
darkest to the lightest. The cutoff
is ma = 0.01
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Either way, the result is the same, as expected,

σ = m2ᾱ1

∫ tmax

0

dt

2π

1√
t2 + 1 + α̃

(4.11a)

= ᾱ1n
0
+ − mα̃2

π

∫ ∞

0

dt

t2 + 1 + α̃
√

t2 + 1
(4.11b)

= ᾱ1n
0
+ − m

π

α̃2

√
α̃2 − 1

cosh−1 α̃, (4.11c)

where we introduced an ultraviolet cutoff tmax = e−C/(ma) to obtain a finite result. This
choice of the cutoff is done to ensure the correct result for bulk density [1]

n0
+ = m2

2π

∫ tmax

0

dt√
t2 + 1

. (4.12)

It is worth mentioning that the integral in (4.11b) can be expressed in several different
equivalent ways, by using known identities for the inverse trigonometric and hyperbolic
functions [14],

∫ ∞

0

dt

t2 + 1 + α̃
√

t2 + 1
=

∫ π/2

0

dx

1 + α̃ cosx
(4.13a)

= 2√
1 − α̃2

tan−1

√
1 − α̃2

1 + α̃
(4.13b)

= 1√
1 − α̃2

tan−1

√
1 − α̃2

α̃
(4.13c)

= 1√
α̃2 − 1

tanh−1

√
α̃2 − 1

α̃
(4.13d)

= cosh−1 α̃√
α̃2 − 1

. (4.13e)

In particular, use was made of the identity [14]

2 tan−1 z = tan−1 2z

1 − z2
. (4.14)

Also, it should be noticed that the result (4.11c) is valid for all values of α̃ > 0, even when
α̃ < 1 there both the square root and the cosh−1 are imaginary but the total result is real.

Contrary to the case of a point adsorbing impurity, where the adsorbed charge reaches a
maximum value of 1 when α1 → ∞, the adsorbed line charge density is not bounded when
ᾱ1 → ∞. Indeed, for large ᾱ1,

σ = ᾱ1n
0
+ − mα̃

π

[
ln(2α̃) + 1

2α̃2

[
ln(2α̃) − 1

2

]
+ O(α̃−4)

]
. (4.15)

It is instructive to compute the electric field E(x) and electric potential φ(x) created by
the adsorbed line charge density and its polarization cloud. Integrating Poisson equation we
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obtain, for x > 0 and choosing x0 = 0,

E(x) = emα̃

∫ ∞

0

e−2
√

t2+1mx dt√
t2 + 1 + α̃

(4.16)

and

φ(x) = eα̃

∫ ∞

0

e−2
√

t2+1mx dt

t2 + 1 + α̃
√

t2 + 1
. (4.17)

Notice that the electric field at the position of the impurity is related to the adsorbed
line charge density by E(0+) = πσ , and as usual we have the expected discontinuity
E(0+) − E(0−) = 2πσ . The potential drop from the adsorbed line to infinity is

φ(0) − φ(+∞) = eα̃

∫ ∞

0

dt

t2 + 1 + α̃
√

t2 + 1
= eα̃√

α̃2 − 1
cosh−1 α̃. (4.18)

The correlation functions can be obtained from the Green functions (4.5) and (4.6), using
the relation (2.3b). Let us simply note that the correlation functions have an exponential
decay both in the x direction (transverse to the adsorbing line) and the y direction (along the
adsorbing line), a behavior similar to the case without adsorbing line. This is different from
the algebraic decay that the correlation functions show parallel along a hard wall [15–17].

4.1.2 Two Infinite Lines

For two parallel infinite lines it is also possible to find analytic expressions for the Green
functions. For two lines located at x = X1 and x = X2, both attracting the positive particles,
the fugacities are

m+(x) = m
[
1 + ᾱ1δ(x − X1) + ᾱ2δ(x − X2)

]
, (4.19)

m−(x) = m. (4.20)

For one line, located at x = X1, attracting the positive particles, and a second line, located
at x = X2, attracting the negative particles, the fugacities are

m+(x) = m(1 + ᾱ1δ(x − X1)), (4.21)

m−(x) = m(1 + ᾱ2δ(x − X2)). (4.22)

Without loss of generality, we suppose that X1 < X2. The resolution of the linear sys-
tem (2.2) satisfied by the Green functions follows similar steps as for the previous case
of one line. The explicit expressions for the Green functions depend on the relative posi-
tions of their arguments with respect to the lines. The complete expressions can be found
in [13]. Let us focus here in the expressions obtained for the density profiles.

For two lines attracting positive particles, we find the positive, negative and charge den-
sities

n+(x) = [
1 + ᾱ1δ(x − X1) + ᾱ2δ(x − X2)

]
n∗

+(x), (4.23a)

n−(x) = n∗
−(x), (4.23b)

ρ(x) = [
ᾱ1δ(x − X1) + ᾱ2δ(x − X2)

]
n∗

+(x) + ρ∗(x), (4.23c)
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with

n∗
+(x) = n0

+ −
∫ ∞

−∞

m4e−2kx

4πk

ᾱ1(2k − m2ᾱ2)e
2kX1 + ᾱ2(2k + m2ᾱ1)e

2kX2

(2k + m2ᾱ1)(2k + m2ᾱ2) − m4ᾱ1ᾱ2e2k(X1−X2)
dl, (4.24a)

n∗
−(x) = n0

− +
∫ ∞

−∞

m2(k + l)2e−2kx

4πk

ᾱ1(2k − m2ᾱ2)e
2kX1 + ᾱ2(2k + m2ᾱ1)e

2kX2

(2k + m2ᾱ1)(2k + m2ᾱ2) − m4ᾱ1ᾱ2e2k(X1−X2)
dl,

(4.24b)

ρ∗(x) = −
∫ +∞

−∞

m2ke−2kx

2π

ᾱ1(2k − m2ᾱ2)e
2kX1 + ᾱ2(2k + m2ᾱ1)e

2kX2

(2k + m2ᾱ1)(2k + m2ᾱ2) − m4ᾱ1ᾱ2e2k(X1−X2)
dl (4.24c)

for X1 < X2 < x, with k = √
m2 + l2. Between the lines, we find

n∗
+(x) = n0

+ −
∫ ∞

−∞

m4

4πk

[
ᾱ1(2k + m2ᾱ2)e

2k(X1−x)

(2k + m2ᾱ1)(2k + m2ᾱ2) − m4ᾱ1ᾱ2e2k(X1−X2)

+ ᾱ2(2k + m2ᾱ1)e
2k(x−X2) − 2m2ᾱ1ᾱ2e

2k(X1−X2)

(2k + m2ᾱ1)(2k + m2ᾱ2) − m4ᾱ1ᾱ2e2k(X1−X2)

]
dl (4.25a)

n∗
−(x) = n0

− +
∫ ∞

−∞

m2

4πk

[
ᾱ1(k + l)2(2k + m2ᾱ2)e

2k(X1−x)

(2k + m2ᾱ1)(2k + m2ᾱ2) − m4ᾱ1ᾱ2e2k(X1−X2)

+ ᾱ2(k − l)2(2k + m2ᾱ1)e
2k(x−X2) + 2m4ᾱ1ᾱ2e

2k(X1−X2)

(2k + m2ᾱ1)(2k + m2ᾱ2) − m4ᾱ1ᾱ2e2k(X1−X2)

]
dl (4.25b)

ρ∗(x) = −
∫ +∞

−∞

m2k

2π

ᾱ1(2k + m2ᾱ2)e
2k(X1−x) + ᾱ2(2k + m2ᾱ1)e

2k(x−X2)

(2k + m2ᾱ1)(2k + m2ᾱ2) − m4ᾱ1ᾱ2e2k(X1−X2)
dl (4.25c)

for X1 < x < X2. It is straightforward to verify that these expressions reduce to case of one
adsorbing line when X1 → −∞, as it should. Also, one can verify that for X1 = X2, we
recover the density profiles for one line with adhesivity ᾱ1 + ᾱ2. Figure 9 shows the charge
density profile in the presence of two positive lines.

The line density of adsorbed particles by each line, σ1 and σ2, are obtained from σ1 =
ᾱ1n

∗+(X1) and a similar expression for σ2. Explicitly,

Fig. 9 Charge density profile as
a function of the distance. The
adhesivities are mᾱ1 = 0.2 and
mᾱ2 = 0.3. The position of the
lines are mX1 = 1, mX1 = 1.3
and mX2 = 2, mX2 = 1.7 from
the darkest to the lightest. The
cutoff is ma = 0.01
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σ1 = ᾱ1n
0
+ − m4ᾱ1

4π

∫ +∞

−∞

[ᾱ1(2k + m2ᾱ2) + ᾱ2(2k − m2ᾱ1)e
2k(X1−X2)]dl

k[(2k + m2ᾱ1)(2k + m2ᾱ2) − m4ᾱ1ᾱ2e2k(X1−X2)]

= m4

2π

∫ +∞

−∞

(2k + m2ᾱ2)ᾱ1 − m2ᾱ1ᾱ2e
2k(X1−X2)

(2k + m2ᾱ1)(2k + m2ᾱ2) − m4ᾱ1ᾱ2e2k(X1−X2)
dl (4.26)

and a similar expression for σ2 interchanging ᾱ1 and ᾱ2. In the second line of (4.26) we used
the formal expression

n0
+ = m2

4π

∫ +∞

−∞

dl

k
(4.27)

for the bulk density (actually, the integral should be cutoff to a lmax = e−C/a to obtain finite
results). The total adsorbed charge is found to be

σ1 + σ2 = m2

π

∫ +∞

−∞

(ᾱ1 + ᾱ2)k + m2ᾱ1ᾱ2[1 − e2k(X1−X2)]
(2k + m2ᾱ1)(2k + m2ᾱ2) − m4ᾱ1ᾱ2e2k(X1−X2)

. (4.28)

It is straightforward to verify that

σ1 + σ2 = −
∫ +∞

−∞
ρ∗(x) dx (4.29)

as it should be, since the system is globally neutral.
In the case where line at X2 adsorbs negative particles while the line at X1 adsorbs the

positive ones, we find the following density profiles

n+(x) = [
1 + ᾱ1δ(x − X1)

]
n∗

+(x), (4.30a)

n−(x) = [
1 + ᾱ2δ(x − X2)

]
n∗

−(x), (4.30b)

ρ(x) = ᾱ1δ(x − X1)n
∗
+(X1) − ᾱ2δ(x − X2)n

∗
−(X2) + ρ∗(x), (4.30c)

with

n∗
+(x) = n0

+ −
∫ ∞

−∞

m2e−2kx

4πk

m2ᾱ1(2k − m2ᾱ2)e
2kX1 − ᾱ2(k − l)2(2k + m2ᾱ1)e

2kX2

(2k + m2ᾱ1)(2k + m2ᾱ2) + m2ᾱ1ᾱ2(k + l)2e2k(X1−X2)
dl,

(4.31a)

n∗
−(x) = n0

− −
∫ ∞

−∞

m2e−2kx

4πk

ᾱ1(k + l)2(m2ᾱ2 − 2k)e2kX1 + m2ᾱ2(2k + m2ᾱ1)e
2kX2

(2k + m2ᾱ1)(2k + m2ᾱ2) + m2ᾱ1ᾱ2(k + l)2e2k(X1−X2)
dl,

(4.31b)

ρ∗(x) = −
∫ +∞

−∞

m2e−2kx

2π

ᾱ1(k + l)(2k − m2ᾱ2)e
2kX1 + ᾱ2(l − k)(2k + m2ᾱ1)e

2kX2

(2k + m2ᾱ1)(2k + m2ᾱ2) + m2(k + l)2ᾱ1ᾱ2e2k(X1−X2)
dl

(4.31c)

for X1 < X2 < x. For x between the lines, X1 < x < X2, we find

n∗
+(x) = n0

+ +
∫ ∞

−∞

m2

4πk

[
m2ᾱ1(−2k − m2ᾱ2)e

2k(X1−x) + ᾱ2(k + l)2(2k + m2ᾱ1)e
2k(x−X2)

(2k + m2ᾱ1)(2k + m2ᾱ2) + m2(k + l)2ᾱ1ᾱ2e2k(X1−X2)

− 2m2ᾱ1ᾱ2(k + l)2e2k(X1−X2)

(2k + m2ᾱ1)(2k + m2ᾱ2) + m2(k + l)2ᾱ1ᾱ2e2k(X1−X2)

]
dl, (4.32a)
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n∗
−(x) = n0

− +
∫ ∞

−∞

m2

4πk

[
ᾱ1(k + l)2(2k + m2ᾱ2)e

2k(X1−x) − m2ᾱ2(2k + m2ᾱ1)e
2k(x−X2)

(2k + m2ᾱ1)(2k + m2ᾱ2) + m2(k + l)2ᾱ1ᾱ2e2k(X1−X2)

− 2m2ᾱ1ᾱ2(k + l)2e2k(X1−X2)

(2k + m2ᾱ1)(2k + m2ᾱ2) + m2(k + l)2ᾱ1ᾱ2e2k(X1−X2)

]
dl, (4.32b)

ρ∗(x) = −
∫ +∞

−∞

m2(k + l)

2π

ᾱ1(2k + m2ᾱ2)e
2k(X1−x) − ᾱ2(2k + m2ᾱ1)e

2k(x−X2)

(2k + m2ᾱ1)(2k + m2ᾱ2) + m2(k + l)2ᾱ1ᾱ2e2k(X1−X2)
dl.

(4.32c)

The line charge density adsorbed by each line is now given by σ1 = ᾱ1n
∗+(X1) and σ2 =

−ᾱ2n
∗−(X2),

σ1 = α1m
2

2π

∫ +∞

−∞

[2k + m2ᾱ2 + (k + l)2ᾱ2e
2k(X1−X2)]dl

(2k + m2ᾱ1)(2k + m2ᾱ2) + m2(k + l)2ᾱ1ᾱ2e2k(X1−X2)
, (4.33a)

σ2 = −α2m
2

2π

∫ +∞

−∞

[2k + m2ᾱ1 + (k + l)2ᾱ1e
2k(X1−X2)]dl

(2k + m2ᾱ1)(2k + m2ᾱ2) + m2(k + l)2ᾱ1ᾱ2e2k(X1−X2)
. (4.33b)

The total line charge density adsorbed by the lines is formally given by

σ1 + σ2 = (ᾱ1 − ᾱ2)
m2

π

∫ +∞

−∞

k dl

(2k + m2ᾱ1)(2k + m2ᾱ2) + m2(k + l)2ᾱ1ᾱ2e2k(X1−X2)
.

(4.34)
Once again, it is straightforward to verify that

σ1 + σ2 = −
∫ +∞

−∞
ρ∗(x) dx (4.35)

as imposed by the global neutrality of the system.
It is interesting to notice that in the two cases considered in this section, the density profile

of particles that are adsorbed by one line is a continuous function as it crosses the line, while
the density profile of the particles that are not adsorbed by this line is discontinuous when
crossing such line. However, the discontinuity jump in this density is exponentially small
for large separations between the two lines, it is of order e−2m|X1−X2|.

4.2 Grand Potential

In the following subsections, we compute the grand potential of the plasma with one or two
adsorbing lines at � = 2, by solving the eigenvalue problem (2.6).

4.2.1 An Infinite Line

For this case we confine the plasma into a rectangular box of area 2Lx × Ly and we work
in Cartesian coordinates. The boundaries and the adsorbing line, located at x = 0, divide the
space in four regions x < −Lx , −Lx < x < 0, 0 < x < Lx and x > Lx which will be labeled
by (1), (2), (3) and (4).

The eigenvalue system (2.6) takes the form

m
[
1 + ᾱ1δ(x)

]
g(r) = 2λ∂zf (r), (4.36a)

mf (r) = 2λ∂z̄g(r) (4.36b)
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for −Lx ≤ x ≤ Lx . Outside that region, m+(x) = m−(x) = 0. Thus we conclude that for
x �∈ [−Lx,Lx], ∂zf = 0 and ∂z̄g = 0, that is f is an anti-analytic function of z and g is an
analytic function of z.

The translation symmetry on the y axis allows us to assume g(r) of the form g(x, y) =
g̃(x)eily . The general solution for the four regions can be written as

g(1)(x, y) = A(1)elx+ily, (4.37a)

g(2)(x, y) = A(2)ekxx+ily + B(2)e−(kxx−ily), (4.37b)

g(3)(x, y) = A(3)ekxx+ily + B(3)e−(kxx−ly), (4.37c)

g(4)(x, y) = B(4)elx+ily, (4.37d)

and

f (1,4)(x, y) = C(1,4)e−lx+ily, (4.38a)

f (2,3)(x, y) = λ

m

(
∂

∂x
+ i

∂

∂y

)
g(2,3)(x, y), (4.38b)

with kx =
√

l2 + m2

λ2 .

Since the eigenfunctions must vanish at x = ±∞, we conclude that g(1) = f (4) = 0 for
l < 0 and f (1) = g(4) = 0 if l > 0. The boundary conditions demand that both g(x, y) and
f (x, y) must be continuous at x = ±Lx . At x = 0, g(x, y) is continuous and f (x, y) is
discontinuous due to the Dirac distribution in (4.36a):

f (0+, y) − f (0−, y) = mᾱ1

λ
g(0, y). (4.39)

Assuming l > 0, these boundary conditions can be expressed by the linear system

⎛
⎜⎜⎝

(kx − l)e−kxLx −(kx + l)ekxLx 0 0
0 0 ekxLx e−kxLx

1 1 −1 −1
m2ᾱ1 − λ2(kx − l) m2ᾱ1 + λ2(kx + l) λ2(kx − l) −λ2(kx + l)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A2

B2

A3

B3

⎞
⎟⎟⎠ = 0.

(4.40)
The functions g(x, y) and f (x, y) must not be zero, hence we demand that the determinant
of the latter matrix must vanish. This condition leads us to the relation

cosh(2kxLx)

[
1 + m2ᾱ1lλ

−2

2k2
x

]
+ sinh(2kxLx)

[
l

kx

+ m2ᾱ1λ
−2

2kx

]
+ m2ᾱ1lλ

−2

2k2
x

= 0. (4.41)

For each value of l, there are several possible solutions to (4.41) for the eigenvalue λ, which
we will denote as {λl,n}n. For l < 0, we obtain (4.41) changing l by −l. To obtain the grand
potential, we can recognize its relationship with a Weierstrass product [19] as follows. Let
us define the analytic function, for l ≥ 0,

hl(z) =
(

1 + m2ᾱ1lz
2

2(m2z2 + l2)

)
cosh (2

√
m2z2 + l2Lx) + m2ᾱ1lz

2

2(m2z2 + l2)

+
(

l√
l2 + m2z2

)(
1 + m2ᾱ1z

2

2l

)
sinh (2

√
m2z2 + l2Lx). (4.42)
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We have hl(0) = e2lLx , h′
l (0) = 0 and hl(z) = hl(−z). By construction, the zeros of hl are

precisely the inverse of the eigenvalues 1/λl,n. The representation of hl(z) as a Weierstrass
infinite product is therefore

hl(z) = hl(0)
∏
n

(1 − zλl,n). (4.43)

Then, we notice that the grand potential is simply

β
 = −
∑

l

ln
∏
n

(1 + λl,n) = −Ly

π

∫ ∞

0
dl ln[e−2lLx hl(−1)], (4.44)

where we replaced the sum over l by an integral in the thermodynamic limit Ly → ∞. In the
thermodynamic limit, we also consider that Lx → ∞, and we approximate cosh(2kLx) ∼
sinh(2kLx) ∼ e2kLx /2, with k = √

l2 + m2. The final result is

β
 = β
0 + β
exc(ᾱ1), (4.45)

with

β
exc(ᾱ1) = −Ly

π

∫ +∞

0
ln

[
1 + m2ᾱ1

2
√

m2 + l2

]
dl (4.46)

and 
0 the grand potential of the unperturbed system for this geometry,


0 = −2LxLypb + 2Lyγ +O(e−2mLx ) (4.47)

with the bulk pressure pb and the surface tension near an impenetrable wall γ ,

βpb = m2

2π

[
ln

2

ma
− C + 1

2

]
= n0 + m2

4π
, (4.48)

βγ = m

[
1

4
− 1

2π

]
. (4.49)

Hence we can conclude that the effective chemical potential of a line of length Ly and
adhesivity ᾱ is μ(ᾱ) = 
±

exc(ᾱ). The integral (4.46) can be computed explicitly. Actually,
one must introduce an ultraviolet cutoff lmax = e−C/a to obtain a finite result. This choice
of the cutoff is done to ensure that the result for bulk pressure (4.48) is the same as the
one obtained by integrating the bulk densities (3.7) [1]. Neglecting terms that vanish when
a → 0, we have

β
exc(ᾱ) = −mLy

π

[
α̃ ln

2e−C

ma
−

√
α̃2 − 1 cosh−1 α̃ − π

2
+ α̃

]
, (4.50)

with α̃ = mᾱ/2. It is interesting to compare this result with the surface tension obtained in
a similar problem where the plasma is confined in a strip with adsorbing boundaries [10].
In that problem the adsorbing line was located at a hard wall boundary. In our notations, the
contribution of both the hard wall and the adsorbing line was [10]

β
adsorbing wall
exc = −mLy

4π

[
mᾱ ln

2e−C

ma
+ 1 − π + mᾱ + 1 − (mᾱ)2

ᾱ
ln(1 + mᾱ)

]
. (4.51)
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We notice that 
exc(ᾱ) + Lyγ of our present problem is different from 

adsorbingwall
exc . This is

to be expected since each situation is different. In our present problem the adsorbing line is
very far from the hard wall boundaries, while in [10], the adsorbing line is on the boundary
itself. We notice however that the (divergent) dominant term, when the cutoff a vanish, for
our problem is twice the one for the adsorbing boundary


exc(ᾱ) ∼ 2
adsorbing wall
exc ∼ mLy

2π
ln(ma). (4.52)

The factor 2 between both expressions can be understood if we realize that in our present
problem the plasma is on both sides of the adsorbing line, while in [10] it is only on one
side, the other side is empty.

From (4.46) and (4.11a) or from (4.50) and (4.11c), one can check that the relation be-
tween the adsorbed charge density σ and the excess grand potential

σ = −ᾱ1
∂(β
/Ly)

∂ᾱ1
(4.53)

is satisfied.

4.2.2 Two Infinite Lines

Let us now consider the case where there are two infinite parallel adsorbing lines which
attract the same kind of particles, say positive. The eigenvalue problem which must be
solved is

mf (r) = 2λ∂z̄g(r), (4.54a)

m
[
1 + ᾱ1δ(x − X1) + ᾱ2(x − X2)

]
g(r) = 2λ∂zf (r). (4.54b)

We have placed the first line at x = X1 and the second one at x = X2. The method of solution
is similar to the one for one line. Following similar steps as in the previous section, we find
after some algebra [13]

β
 = β
0 + β
exc(ᾱ1) + β
exc(ᾱ2) + β
±±, (4.55)

with

β
±± = −Ly

π

∫ +∞

0
ln

[
1 − m4ᾱ1ᾱ2e

−2k|X1−X2|

(2k + m2ᾱ1)(2k + m2ᾱ2)

]
dl (4.56)

and β
exc(ᾱ) given in (4.46). We recall that k = √
m2 + l2.

When the lines attract different types of particles the grand potential is

β
 = β
0 + β
exc(ᾱ1) + β
exc(ᾱ2) + β
±∓, (4.57)

with

β
±∓ = −Ly

2π

∫ +∞

−∞
ln

[
1 + m2ᾱ1ᾱ2(k + l)2e−2k|X1−X2|

(2k + m2ᾱ1)(2k + m2ᾱ2)

]
dl. (4.58)

The effective interaction between two lines (depending on their sign) is given by the
expressions (4.56) and (4.58).
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Fig. 10 Effective repulsion
between two “positive” lines as a
function of their distance
2x0 = |X1 − X2|. The
adhesivities are
mᾱ1 = mᾱ2 = 0.2,0.5,1 from
the darkest to the lightest. The
cutoff is ma = 0.01

Fig. 11 Effective attraction
between a positive and a negative
line as a function of their distance
2x0 = |X1 − X2|. The values for
the different parameters are the
same as in Fig. 10

Figures 10 and 11 show the effective interaction between two infinite lines. As expected,
like in the problem for point impurities, there is a repulsion if the sign of the lines is equal
and a repulsion if it is different.

Notice that in both cases, s = ±, s ′ = ±, in the expression of the full excess grand poten-
tial 
exc(ᾱ1)+
exc(ᾱ2)+
ss′

appears the logarithm of a term which is precisely the denom-
inator in the Green functions and the density profiles (4.24), (4.25), (4.31) and (4.32). Also,
one can easily check that the adsorbed charge on each line, computed in (4.26) and (4.33),
can also be obtained from

σi = − β

Ly

αi

∂

∂αi

(

exc(ᾱ1) + 
exc(ᾱ2) + 
ss′)

(4.59)

for i = 1,2.

5 Summary

In the present document we analyzed the behavior of the two-component plasma at � = 2
in the presence of one and two point adsorbing impurities, or in the presence of one and two
adsorbing lines.

For point impurities, as shown in [8], the partition function and correlations of the system
can be expressed in terms of the same quantities for an unperturbed system, without impu-
rities. Since at � = 2, exact results are available for the partition function and correlations
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of the unperturbed system, we were able to obtain exact results for the partition function,
the density profiles and correlation functions of the plasma with one or two point impurities.
We also computed the electric potential created by one impurity, due to the charge it adsorbs
and the polarization cloud that is formed around it.

As a simple model for electrodes with adsorbing sites, we studied the properties of the
plasma with one or two parallel lines of absorbing impurities. The general formalism devel-
oped in [1] for the two-component plasma with an external potential is applied to this case.
We obtained exact results for the partition function and density profiles of the plasma. In
both cases we checked that various relations between the adsorbed charge and the excess
grand potential are satisfied.
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